... from pacal import *
|
||
.
|
||
Using compiled interpolation routine Compiled sparse grid routine not available
... from pylab import figure, legend, title, xlim, ylim
colors = "kbgrcmy"
def plot_nonc(d, titl = "", lim = None):
figure()
print "----------------------------------------------------------------"
for i, nc in enumerate([0, 1, 2, 5, 10]):
ncd = d(nc)
print ncd
ncd.summary(show_moments=True)
ncd.plot(label = "nonc=" + str(nc), color = colors[i%len(colors)])
print
if lim is not None:
xlim(lim[0], lim[1])
ylim(lim[2], lim[3])
title(titl)
legend()
show()
|
||
.
|
||
... plot_nonc(lambda nc: NoncentralTDistr(2, nc), titl = "NoncentralT(2, nonc)")
|
||
.
|
||
---------------------------------------------------------------- NoncentralTDistr(df=2,mu=0)#66364016 ============= summary ============= NoncT(2,0) mean = 0.0 var = inf skewness = nan kurtosis = nan entropy = 1.9602792291600828 median = 0.0 mode = 6.1903394578241122e-09 medianad = 0.8164965809277253 iqrange(0.025) = 8.605305459498918 ci(0.05) = (-4.302652729749469, 4.3026527297494495) range = (-inf, inf) tailexp = (-3.0000000000004379, -3.0000000000004565) int_err = -2.2204460492503131e-16 moments: 0 = 1.0000000000000002 1 = 0.0 2 = nan 3 = nan 4 = nan 5 = nan 6 = nan 7 = nan 8 = nan 9 = nan 10 = nan NoncentralTDistr(df=2,mu=1)#66367376 ============= summary ============= NoncT(2,1) mean = 1.7724538509055168 var = inf skewness = nan kurtosis = nan entropy = 2.032565640811077 median = 1.1424180717802386 mode = 0.75893851188818306 medianad = 0.9078066441827171 iqrange(0.025) = 10.103390219998012 ci(0.05) = (-1.4764994860084424, 8.626890733989569) range = (-inf, inf) tailexp = (-3.0000000000003451, -3.0000000000005218) int_err = -4.4408920985006262e-16 moments: 0 = 1.0000000000000004 1 = 1.7724538509055168 2 = nan 3 = nan 4 = nan 5 = nan 6 = nan 7 = nan 8 = nan 9 = nan 10 = nan NoncentralTDistr(df=2,mu=2)#66389264 ============= summary ============= NoncT(2,2) mean = 3.5449077018109922 var = inf skewness = nan kurtosis = nan entropy = 2.2153700695930576 median = 2.3303902594719865 mode = 1.5468640851845601 medianad = 1.1550512381701201 iqrange(0.025) = 13.93583867865285 ci(0.05) = (0.04469873059773619, 13.980537409250585) range = (-inf, inf) tailexp = (-3.0000000000004099, -3.0000000000008575) int_err = -1.3322676295501878e-15 moments: 0 = 1.0000000000000013 1 = 3.5449077018109922 2 = nan 3 = nan 4 = nan 5 = nan 6 = nan 7 = nan 8 = nan 9 = nan 10 = nan NoncentralTDistr(df=2,mu=5)#66364336 ============= summary ============= NoncT(2,5) mean = 8.862269254527531 var = inf skewness = nan kurtosis = nan entropy = 2.8425183550980853 median = 5.962374771525829 mode = 4.0126194901895431 medianad = 2.269713040233854 iqrange(0.025) = 29.758031070622845 ci(0.05) = (2.257334844081019, 32.015365914703864) range = (-inf, inf) tailexp = (-3.0000000000004845, -3.0000000000005218) int_err = -1.1102230246251565e-15 moments: 0 = 1.0000000000000011 1 = 8.862269254527531 2 = nan 3 = nan 4 = nan 5 = nan 6 = nan 7 = nan 8 = nan 9 = nan 10 = nan NoncentralTDistr(df=2,mu=10)#69383600 ============= summary ============= NoncT(2,10) mean = 17.724538509055037 var = inf skewness = nan kurtosis = nan entropy = 3.4902865634157831 median = 11.988419035468151 mode = 8.1256617520309717 medianad = 4.355352575617786 iqrange(0.025) = 58.106197253538205 ci(0.05) = (5.038848593318069, 63.14504584685628) range = (-inf, inf) tailexp = (-10.24319552183813, -3.0000000000005591) int_err = -1.5543122344752192e-15 moments: 0 = 1.0000000000000016 1 = 17.724538509055037 2 = nan 3 = nan 4 = nan 5 = nan 6 = nan 7 = nan 8 = nan 9 = nan 10 = nan
... plot_nonc(lambda nc: NoncentralTDistr(10, nc), titl = "NoncentralT(10, nonc)")
|
||
.
|
||
---------------------------------------------------------------- NoncentralTDistr(df=10,mu=0)#70820816 ============= summary ============= NoncT(10,0) mean = -2.7755575615628914e-17 var = 1.2500000000000024 skewness = 1.58882185807825e-16 kurtosis = 3.9999999999999925 entropy = 1.5212624929756817 median = 0.0 mode = 6.0274295788821538e-09 medianad = 0.6998120613124307 iqrange(0.025) = 4.45627770397253 ci(0.05) = (-2.2281388519862757, 2.228138851986254) range = (-inf, inf) tailexp = (-11.000000000000284, -11.000000000000284) int_err = -8.8817841970012523e-16 moments: 0 = 1.0000000000000009 1 = -2.7755575615628914e-17 2 = 1.2500000000000024 3 = 2.2204460492503131e-16 4 = 6.2500000000000124 5 = -1.4210854715202004e-14 6 = 78.125000000000398 7 = -1.6200374375330284e-12 8 = 2734.37500000006 9 = -1.837179297581315e-10 10 = nan NoncentralTDistr(df=10,mu=1)#74379216 ============= summary ============= NoncT(10,1) mean = 1.0837223079391449 var = 1.3255459592750625 skewness = 0.39992972990584891 kurtosis = 4.2499413181413477 entropy = 1.5430433871472671 median = 1.025720922828001 mode = 0.93291034194131217 medianad = 0.7169797223557234 iqrange(0.025) = 4.575131194256144 ci(0.05) = (-1.0346256590795306, 3.540505535176614) range = (-inf, inf) tailexp = (-11.00000000000027, -11.00000000000027) int_err = -8.8817841970012523e-16 moments: 0 = 1.0000000000000009 1 = 1.0837223079391449 2 = 2.5000000000000044 3 = 6.192698902509437 4 = 20.833333333333787 5 = 80.505085732622433 6 = 395.83333333333786 7 = 2394.5102423036828 8 = 19895.833333336261 9 = 270414.51874291606 10 = nan NoncentralTDistr(df=10,mu=2)#74413200 ============= summary ============= NoncT(10,2) mean = 2.1674446158782885 var = 1.552183837100225 skewness = 0.72363329408286414 kurtosis = 4.8273295684844699 entropy = 1.6038742415428799 median = 2.053691151118488 mode = 1.8702078674151745 medianad = 0.7663524511650831 iqrange(0.025) = 4.916869970883092 ci(0.05) = (0.04096565549093609, 4.957835626374028) range = (-inf, inf) tailexp = (-11.000000000000307, -11.000000000000181) int_err = -6.6613381477509392e-16 moments: 0 = 1.0000000000000007 1 = 2.1674446158782885 2 = 6.2500000000000071 3 = 21.674446158782899 4 = 89.583333333333456 5 = 439.68162207816738 6 = 2598.9583333333358 7 = 19094.154949403965 8 = 187317.70833333323 9 = 3012335.1694675167 10 = nan NoncentralTDistr(df=10,mu=5)#103167568 ============= summary ============= NoncT(10,5) mean = 5.4186115396957231 var = 3.1386489818764018 skewness = 1.1915013284649849 kurtosis = 6.3154072187525401 entropy = 1.9063262108514267 median = 5.152684264812535 mode = 4.7155492907120564 medianad = 1.051562464702453 iqrange(0.025) = 6.877359219453013 ci(0.05) = (2.7556674169781727, 9.633026636431186) range = (-inf, inf) tailexp = (-11.000000000000433, -11.000000000000158) int_err = -1.1102230246251565e-15 moments: 0 = 1.0000000000000011 1 = 5.4186115396957231 2 = 32.500000000000028 3 = 216.74446158782894 4 = 1620.8333333333344 5 = 13778.755058083421 6 = 136145.83333333372 7 = 1624551.3454249694 8 = 25259895.833333459 9 = 630530281.08540511 10 = nan NoncentralTDistr(df=10,mu=10)#103839664 ============= summary ============= NoncT(10,10) mean = 10.837223079391444 var = 8.8045959275056056 skewness = 1.3621117864055567 kurtosis = 7.0845253856916131 entropy = 2.3966117728947571 median = 10.331273563114916 mode = 9.4949812759964338 medianad = 1.7250988211625042 iqrange(0.025) = 11.436240190750638 ci(0.05) = (6.5942102221556915, 18.03045041290633) range = (-inf, inf) tailexp = (-11.000000000000307, -11.000000000000732) int_err = -8.8817841970012523e-16 moments: 0 = 1.0000000000000009 1 = 10.837223079391444 2 = 126.25000000000011 3 = 1594.6199673961703 4 = 22089.583333333372 5 = 341062.89205570531 6 = 6013098.9583333377 7 = 125980654.06495768 8 = 3389117317.7083015 9 = 144400264124.44336 10 = nan
... |
||
.
|
||
... plot_nonc(lambda nc: NoncentralChiSquareDistr(2, nc), titl = "NoncentralChiSquare(2, nonc)")
|
||
.
|
||
---------------------------------------------------------------- NoncentralChiSquare(df=2,lambda=0)#103169296 ============= summary ============= NoncChi2(2,0) mean = 2.0000000000000004 var = 4.000000000000008 skewness = 2.0000000000000089 kurtosis = 9.0000000000001403 entropy = 1.6931471805599465 median = 1.386294361119856 mode = 2.3674838630545864e-16 medianad = 0.9624236501191911 iqrange(0.025) = 7.327123292259132 ci(0.05) = (0.05063561596861359, 7.3777589082277455) range = (0.0, inf) tailexp = (None, -158.27198941847502) int_err = 0.0 moments: 0 = 1.0 1 = 2.0000000000000004 2 = 8.0000000000000178 3 = 48.000000000000171 4 = 384.00000000000409 5 = 3840.0000000001064 6 = 46080.000000002772 7 = 645120.00000007404 8 = 10321920.000001989 9 = 185794560.00005379 10 = 3715891200.0014415 NoncentralChiSquare(df=2,lambda=1)#110306640 ============= summary ============= NoncChi2(2,1) mean = 3.0000000000000009 var = 8.0000000000000071 skewness = 1.767766952966364 kurtosis = 7.4999999999999449 entropy = 2.0966226994671597 median = 2.177038550303904 mode = 3.5366674438146647e-15 medianad = 1.4702116688484144 iqrange(0.025) = 10.390892489050817 ci(0.05) = (0.08330038643724205, 10.47419287548806) range = (0.0, inf) tailexp = (None, -149.68320312849369) int_err = -4.4408920985006262e-16 moments: 0 = 1.0000000000000004 1 = 3.0000000000000009 2 = 17.0 3 = 139.00000000000006 4 = 1472.9999999999968 5 = 19090.999999999876 6 = 291792.99999999453 7 = 5129306.9999997923 8 = 101817088.99999154 9 = 2250495522.9996691 10 = 54780588560.986938 NoncentralChiSquare(df=2,lambda=2)#110391824 ============= summary ============= NoncChi2(2,2) mean = 4.0000000000000018 var = 12.000000000000007 skewness = 1.5396007178390005 kurtosis = 6.3333333333333242 entropy = 2.373050068002108 median = 3.0936118736811262 mode = 7.4666846728198261e-08 medianad = 1.955902214027441 iqrange(0.025) = 12.787395744436761 ci(0.05) = (0.13596528499266802, 12.92336102942943) range = (0.0, inf) tailexp = (None, -146.0193157967114) int_err = -2.2204460492503131e-16 moments: 0 = 1.0000000000000002 1 = 4.0000000000000018 2 = 28.000000000000028 3 = 272.00000000000023 4 = 3344.0000000000055 5 = 49471.999999999985 6 = 852927.99999999895 7 = 16758015.999999948 8 = 369082623.9999975 9 = 8996922367.9999008 10 = 240294124543.99521 NoncentralChiSquare(df=2,lambda=5)#111076752 ============= summary ============= NoncChi2(2,5) mean = 7.0000000000000036 var = 24.000000000000018 skewness = 1.1567034896476116 kurtosis = 4.8333333333333277 entropy = 2.8540805687501845 median = 6.03441301933434 mode = 3.8440965130941214 medianad = 3.046829477549737 iqrange(0.025) = 18.458974498667118 ci(0.05) = (0.5147988393313607, 18.97377333799848) range = (0.0, inf) tailexp = (None, -138.75099491367538) int_err = -6.6613381477509392e-16 moments: 0 = 1.0000000000000007 1 = 7.0000000000000036 2 = 73.000000000000071 3 = 983.00000000000091 4 = 16049.00000000002 5 = 306215.00000000041 6 = 6662905.000000013 7 = 162455095.00000036 8 = 4379998945.0000086 9 = 129231454535.00015 10 = 4137832886825.0093 NoncentralChiSquare(df=2,lambda=10)#111200048 ============= summary ============= NoncChi2(2,10) mean = 12.000000000000009 var = 44.000000000000014 skewness = 0.87712391149894509 kurtosis = 4.0413223140495829 entropy = 3.2337776610177489 median = 11.01687376621316 mode = 8.9405001408011078 medianad = 4.2874279598175296 iqrange(0.025) = 25.432208283076946 ci(0.05) = (2.0766291514586293, 27.508837434535575) range = (0.0, inf) tailexp = (None, -130.56040988872405) int_err = -4.4408920985006262e-16 moments: 0 = 1.0000000000000004 1 = 12.000000000000009 2 = 188.00000000000017 3 = 3568.0000000000045 4 = 78864.000000000087 5 = 1979840.0000000023 6 = 55468479.999999933 7 = 1711768320.0000021 8 = 57598910720.000069 9 = 2096139381759.9973 10 = 81952643251199.859
... plot_nonc(lambda nc: NoncentralChiSquareDistr(10, nc), titl = "NoncentralChiSquare(10, nonc)")
|
||
.
|
||
---------------------------------------------------------------- NoncentralChiSquare(df=10,lambda=0)#71971312 ============= summary ============= NoncChi2(10,0) mean = 10.000000000000004 var = 20.000000000000018 skewness = 0.89442719099991375 kurtosis = 4.1999999999999966 entropy = 2.8467303371806909 median = 9.341817765591962 mode = 8.0000001171460955 medianad = 2.8502164199062614 iqrange(0.025) = 17.236204570570507 ci(0.05) = (3.2469727802368404, 20.48317735080735) range = (0.0, inf) tailexp = (None, -154.27198941847513) int_err = -4.4408920985006262e-16 moments: 0 = 1.0000000000000004 1 = 10.000000000000004 2 = 120.00000000000007 3 = 1680.0000000000014 4 = 26880.000000000022 5 = 483840.00000000058 6 = 9676800.0000000093 7 = 212889600.00000036 8 = 5109350400.0000067 9 = 132843110400.00034 10 = 3719607091200.0103 NoncentralChiSquare(df=10,lambda=1)#112548944 ============= summary ============= NoncChi2(10,1) mean = 11.000000000000005 var = 24.000000000000014 skewness = 0.88453796267170048 kurtosis = 4.1666666666666599 entropy = 2.9391754523214102 median = 10.285182180704636 mode = 8.8247439107194197 medianad = 3.127713808000056 iqrange(0.025) = 18.8832228163269 ci(0.05) = (3.5834431913885103, 22.46666600771541) range = (0.0, inf) tailexp = (None, -147.44346212041083) int_err = 0.0 moments: 0 = 1.0 1 = 11.000000000000005 2 = 145.00000000000006 3 = 2227.0000000000023 4 = 39041.000000000029 5 = 769051.00000000093 6 = 16813201.000000015 7 = 403889795.0000006 8 = 10573236097.000015 9 = 299555470891.00055 10 = 9130832638481.0312 NoncentralChiSquare(df=10,lambda=2)#116677648 ============= summary ============= NoncChi2(10,2) mean = 11.999999999999996 var = 28.000000000000021 skewness = 0.86391879544966399 kurtosis = 4.1020408163265296 entropy = 3.0190346127763563 median = 11.243013356825138 mode = 9.6914192947246285 medianad = 3.390141606301141 iqrange(0.025) = 20.401965709952567 ci(0.05) = (3.943081665237083, 24.34504737518965) range = (0.0, inf) tailexp = (None, -143.85161004257196) int_err = -4.4408920985006262e-16 moments: 0 = 1.0000000000000004 1 = 11.999999999999996 2 = 172.00000000000009 3 = 2864.0000000000023 4 = 54288.000000000022 5 = 1153472.0000000009 6 = 27139264.000000022 7 = 700180224.00000048 8 = 19648315648.000023 9 = 595656682496.00024 10 = 19396109036544.012 NoncentralChiSquare(df=10,lambda=5)#117379056 ============= summary ============= NoncChi2(10,5) mean = 15.0 var = 40.000000000000021 skewness = 0.79056941504209466 kurtosis = 3.8999999999999995 entropy = 3.207528555208282 median = 14.165927836310884 mode = 12.449641931119741 medianad = 4.096576949609718 iqrange(0.025) = 24.42243233310547 ci(0.05) = (5.152318702405864, 29.574751035511333) range = (0.0, inf) tailexp = (None, -136.64615094277852) int_err = -4.4408920985006262e-16 moments: 0 = 1.0000000000000004 1 = 15.0 2 = 265.00000000000006 3 = 5375.0000000000009 4 = 122865.00000000006 5 = 3120815.0000000023 6 = 87112825.000000104 7 = 2648404575.0000033 8 = 87050646625.000137 9 = 3074393034575.0039 10 = 116054342142825.11 NoncentralChiSquare(df=10,lambda=10)#117522960 ============= summary ============= NoncChi2(10,10) mean = 20.000000000000021 var = 60.000000000000043 skewness = 0.68853037265908923 kurtosis = 3.6666666666666572 entropy = 3.4238121816625759 median = 19.107384707413736 mode = 17.276879326635655 medianad = 5.077420399226437 iqrange(0.025) = 29.996990768000746 ci(0.05) = (7.5338697787430435, 37.53086054674379) range = (0.0, inf) tailexp = (None, -128.48675401585879) int_err = -6.6613381477509392e-16 moments: 0 = 1.0000000000000007 1 = 20.000000000000021 2 = 460.00000000000034 3 = 11920.000000000007 4 = 342800.00000000023 5 = 10815040.000000013 6 = 370897600.0000003 7 = 13723884800.000017 8 = 544510009600.00073 9 = 23044548736000.031 10 = 1035664044723202.1
... |
||
.
|
||
... plot_nonc(lambda nc: NoncentralBetaDistr(1, 1, nc), titl = "NoncentralBeta(1, 1, nonc)")
|
||
.
|
||
---------------------------------------------------------------- NoncentralBetaDistr(alpha=1,beta=1,lambda=0)#112442960 ============= summary ============= NoncBeta(1,1,0) mean = 0.50000000000000011 var = 0.083333333333333356 skewness = -1.9469997199633577e-15 kurtosis = 1.8000000000000005 entropy = -2.2508739996880788e-15 median = 0.5 mode = 0.026229840838391288 medianad = 0.25 iqrange(0.025) = 0.9499999999999982 ci(0.05) = (0.02499999999999954, 0.9749999999999978) range = (0.0, 1.0) tailexp = (None, None) int_err = -2.2204460492503131e-15 moments: 0 = 1.0000000000000022 1 = 0.50000000000000011 2 = 0.33333333333333337 3 = 0.25 4 = 0.20000000000000004 5 = 0.16666666666666666 6 = 0.14285714285714285 7 = 0.125 8 = 0.11111111111111112 9 = 0.099999999999999992 10 = 0.090909090909090912 NoncentralBetaDistr(alpha=1,beta=1,lambda=1)#133318960 ============= summary ============= NoncBeta(1,1,1) mean = 0.5738773611494663 var = 0.079645885164394456 skewness = -0.30915299924560946 kurtosis = 1.9382346129962285 entropy = -0.032981926300903498 median = 0.6082020162263387 mode = 0.99999997067098545 medianad = 0.23187077199719475 iqrange(0.025) = 0.9428225179076408 ci(0.05) = (0.040393903618925676, 0.9832164215265665) range = (0.0, 1.0) tailexp = (None, None) int_err = 2.3314683517128287e-15 moments: 0 = 0.99999999999999767 1 = 0.5738773611494663 2 = 0.40898111080426958 3 = 0.31917000276157415 4 = 0.26218663720987745 5 = 0.22266703487653369 6 = 0.19359469777791613 7 = 0.17128660296070614 8 = 0.15361640300423257 9 = 0.13926783916429222 10 = 0.12738135190461969 NoncentralBetaDistr(alpha=1,beta=1,lambda=2)#134034544 ============= summary ============= NoncBeta(1,1,2) mean = 0.63212055882855778 var = 0.071941363792041246 skewness = -0.56163072472903064 kurtosis = 2.258770980059611 entropy = -0.107153583906737 median = 0.6850769421544973 mode = 0.99999997720537714 medianad = 0.20033790278970495 iqrange(0.025) = 0.9236218543023521 ci(0.05) = (0.06375938805553971, 0.9873812423578918) range = (0.0, 1.0) tailexp = (None, None) int_err = -2.2204460492503131e-16 moments: 0 = 1.0000000000000002 1 = 0.63212055882855778 2 = 0.47151776468576934 3 = 0.37817005891403821 4 = 0.31642635245846296 5 = 0.27233529713460702 6 = 0.23918586063082928 7 = 0.21331547151489411 8 = 0.19254426043525386 9 = 0.17548936309305485 10 = 0.16122929896605837 NoncentralBetaDistr(alpha=1,beta=1,lambda=5)#135477008 ============= summary ============= NoncBeta(1,1,5) mean = 0.74686640022017636 var = 0.04720433986987408 skewness = -1.1115465368283606 kurtosis = 3.6674999319064203 entropy = -0.39807563031623217 median = 0.8080123179913834 mode = 0.9999999753426333 medianad = 0.1299478410662351 iqrange(0.025) = 0.8031790798721575 ci(0.05) = (0.18959475647046786, 0.9927738363426254) range = (0.0, 1.0) tailexp = (None, None) int_err = -8.8817841970012523e-16 moments: 0 = 1.0000000000000009 1 = 0.74686640022017636 2 = 0.60501375964771809 3 = 0.51097523263410749 4 = 0.44325283704723756 5 = 0.3918679073819063 6 = 0.35142042674010981 7 = 0.31869327264897468 8 = 0.29163603145517836 9 = 0.26887407260652779 10 = 0.24944856619321057 NoncentralBetaDistr(alpha=1,beta=1,lambda=10)#135687984 ============= summary ============= NoncBeta(1,1,10) mean = 0.83973048212003665 var = 0.023068331702421587 skewness = -1.6100974829039867 kurtosis = 6.0198255036441068 entropy = -0.83344942576190806 median = 0.885655915984701 mode = 0.99999997355462433 medianad = 0.07876427304530455 iqrange(0.025) = 0.5650867645824653 ci(0.05) = (0.4306950876671735, 0.9957818522496389) range = (0.0, 1.0) tailexp = (None, None) int_err = 1.1102230246251565e-16 moments: 0 = 0.99999999999999989 1 = 0.83973048212003665 2 = 0.72821561430397064 3 = 0.64460594712642671 4 = 0.57908698973181205 5 = 0.52614126283523532 6 = 0.48235658151726157 7 = 0.4454842501884731 8 = 0.41397165679822101 9 = 0.38670739498360301 10 = 0.36287245559199377
... plot_nonc(lambda nc: NoncentralBetaDistr(10, 15, nc), titl = "NoncentralBeta(10, 15, nonc)")
|
||
.
|
||
---------------------------------------------------------------- NoncentralBetaDistr(alpha=10,beta=15,lambda=0)#134036816 ============= summary ============= NoncBeta(10,15,0) mean = 0.39999999999999836 var = 0.00923076923076919 skewness = 0.15419748144198747 kurtosis = 2.820105820105844 entropy = -0.92722950454835984 median = 0.3972924046348387 mode = 0.39130434780072687 medianad = 0.06631350575912001 iqrange(0.025) = 0.37296671064538495 ci(0.05) = (0.22109690534667853, 0.5940636159920635) range = (0.0, 1.0) tailexp = (None, None) int_err = 4.3298697960381105e-15 moments: 0 = 0.99999999999999567 1 = 0.39999999999999836 2 = 0.16923076923076849 3 = 0.075213675213674891 4 = 0.034920634920634776 5 = 0.016858237547892646 6 = 0.0084291187739463213 7 = 0.0043505129155851996 8 = 0.0023112099864046371 9 = 0.0012606599925843475 10 = 0.00070448646644419429 NoncentralBetaDistr(alpha=10,beta=15,lambda=1)#72005648 ============= summary ============= NoncBeta(10,15,1) mean = 0.41132853724592888 var = 0.0093795162593731645 skewness = 0.12864812766286643 kurtosis = 2.8070566164177673 entropy = -0.91855904303181013 median = 0.4090578635207688 mode = 0.40405298675856804 medianad = 0.06690932478187445 iqrange(0.025) = 0.3759629514866686 ci(0.05) = (0.2297162391702446, 0.6056791906569132) range = (0.0, 1.0) tailexp = (None, None) int_err = 5.1070259132757201e-15 moments: 0 = 0.99999999999999489 1 = 0.41132853724592888 2 = 0.17857068181225003 3 = 0.081284204970535373 4 = 0.038586465012870844 5 = 0.019017334009519087 6 = 0.0096941826394799421 7 = 0.0050947784580311854 8 = 0.0027529252539922515 9 = 0.0015257434387586741 10 = 0.00086552950784239799 NoncentralBetaDistr(alpha=10,beta=15,lambda=2)#142203120 ============= summary ============= NoncBeta(10,15,2) mean = 0.42225172865424165 var = 0.0094878147916762461 skewness = 0.1039350234394301 kurtosis = 2.7974452686351667 entropy = -0.9122674656662545 median = 0.4204167343547491 mode = 0.41639828611991553 medianad = 0.0673382053680876 iqrange(0.025) = 0.378147840257382 ci(0.05) = (0.23834053259134957, 0.6164883728487316) range = (0.0, 1.0) tailexp = (None, None) int_err = 4.5519144009631418e-15 moments: 0 = 0.99999999999999545 1 = 0.42225172865424165 2 = 0.18778433714317228 3 = 0.087400806429204281 4 = 0.042353572650929802 5 = 0.02127720431828891 6 = 0.01104122269775816 7 = 0.0059001256086713728 8 = 0.0032381677871350292 9 = 0.0018211176826589141 10 = 0.0010473955532219672 NoncentralBetaDistr(alpha=10,beta=15,lambda=5)#144016080 ============= summary ============= NoncBeta(10,15,5) mean = 0.45278943439597108 var = 0.0096201432000261478 skewness = 0.035894349843292657 kurtosis = 2.7855490537516658 entropy = -0.90437091305234962 median = 0.4521888959049869 mode = 0.45096865852796064 medianad = 0.06783891429956715 iqrange(0.025) = 0.38090865641889937 ci(0.05) = (0.2640769200434825, 0.6449855764623819) range = (0.0, 1.0) tailexp = (None, None) int_err = 4.4408920985006262e-15 moments: 0 = 0.99999999999999556 1 = 0.45278943439597108 2 = 0.21463841510065051 3 = 0.10593167365957094 4 = 0.054185458799116799 5 = 0.028618296939051144 6 = 0.015557300575710158 7 = 0.008681302069808652 8 = 0.0049612527290364876 9 = 0.0028979013394721189 10 = 0.0017270384300759722 NoncentralBetaDistr(alpha=10,beta=15,lambda=10)#144813328 ============= summary ============= NoncBeta(10,15,10) mean = 0.49726921410214625 var = 0.0094172031042719512 skewness = -0.057326363642821752 kurtosis = 2.8021279892218276 entropy = -0.91504528557671549 median = 0.4983456657864689 mode = 0.50086299019577196 medianad = 0.06697638936506115 iqrange(0.025) = 0.3771702486843422 ci(0.05) = (0.30575323304508756, 0.6829234817294297) range = (0.0, 1.0) tailexp = (None, None) int_err = 2.9976021664879227e-15 moments: 0 = 0.999999999999997 1 = 0.49726921410214625 2 = 0.25669387439803881 3 = 0.13695934289897821 4 = 0.075261978029826301 5 = 0.04246970667067592 6 = 0.024547891178927757 7 = 0.014502755788461604 8 = 0.0087415029790017529 9 = 0.0053668936584482753 10 = 0.0033515783484655798
... |
||
.
|
||
... plot_nonc(lambda nc: NoncentralFDistr(1, 1, nc), titl = "NoncentralF(1, 1, nonc)", lim = [-0.1, 3, 0, 0.9])
|
||
.
|
||
---------------------------------------------------------------- NoncentralFDistr(df1=1,df2=1,lambda=0)#142219664 ============= summary ============= NoncF(1,1,0) mean = nan var = nan skewness = nan kurtosis = nan entropy = 2.5310242469692885 median = 0.9999999999999971 mode = 6.5449953952479743e-17 medianad = 0.9717365435132885 iqrange(0.025) = 647.7874677654179 ci(0.05) = (0.0015437125086741295, 647.7890114779266) range = (0.0, inf) tailexp = (None, -1.5000000000003169) int_err = 1.3322676295501878e-15 moments: 0 = 0.99999999999999867 1 = nan 2 = nan 3 = nan 4 = nan 5 = nan 6 = nan 7 = nan 8 = nan 9 = nan 10 = nan NoncentralFDistr(df1=1,df2=1,lambda=1)#134051600 ============= summary ============= NoncF(1,1,1) mean = nan var = nan skewness = nan kurtosis = nan entropy = 3.3555913521807286 median = 2.2954203805980216 mode = 6.1802553028065065e-17 medianad = 2.2143875871903624 iqrange(0.025) = 1385.1322785585317 ci(0.05) = (0.0041919517836761355, 1385.1364705103153) range = (0.0, inf) tailexp = (None, -1.5000000000003169) int_err = 3.3306690738754696e-15 moments: 0 = 0.99999999999999667 1 = nan 2 = nan 3 = nan 4 = nan 5 = nan 6 = nan 7 = nan 8 = nan 9 = nan 10 = nan NoncentralFDistr(df1=1,df2=1,lambda=2)#159446416 ============= summary ============= NoncF(1,1,2) mean = nan var = nan skewness = nan kurtosis = nan entropy = 3.9265356549232493 median = 4.0069613933821495 mode = 4.3634370272011962e-17 medianad = 3.796203261948913 iqrange(0.025) = 2245.4715097329276 ci(0.05) = (0.011310370509324203, 2245.482820103437) range = (0.0, inf) tailexp = (None, -1.5000000000003542) int_err = 6.2172489379008766e-15 moments: 0 = 0.99999999999999378 1 = nan 2 = nan 3 = nan 4 = nan 5 = nan 6 = nan 7 = nan 8 = nan 9 = nan 10 = nan NoncentralFDistr(df1=1,df2=1,lambda=5)#159698704 ============= summary ============= NoncF(1,1,5) mean = nan var = nan skewness = nan kurtosis = nan entropy = 4.8939846800934692 median = 10.103710479505944 mode = 6.1802553028065065e-17 medianad = 9.005575569013857 iqrange(0.025) = 5130.382205818015 ci(0.05) = (0.15750742797489098, 5130.539713245989) range = (0.0, inf) tailexp = (None, -1.5000000000002889) int_err = 8.992806499463768e-15 moments: 0 = 0.99999999999999101 1 = nan 2 = nan 3 = nan 4 = nan 5 = nan 6 = nan 7 = nan 8 = nan 9 = nan 10 = nan NoncentralFDistr(df1=1,df2=1,lambda=10)#159445168 ============= summary ============= NoncF(1,1,10) mean = nan var = nan skewness = nan kurtosis = nan entropy = 5.6232262399564013 median = 20.9886788068141 mode = 2.3289887644643477 medianad = 17.922712518472153 iqrange(0.025) = 10183.32765475939 ci(0.05) = (0.9992904727604669, 10184.326945232151) range = (0.0, inf) tailexp = (None, -1.5000000000004288) int_err = 1.0436096431476471e-14 moments: 0 = 0.99999999999998956 1 = nan 2 = nan 3 = nan 4 = nan 5 = nan 6 = nan 7 = nan 8 = nan 9 = nan 10 = nan
... plot_nonc(lambda nc: NoncentralFDistr(10, 20, nc), titl = "NoncentralF(10, 20, nonc)")
|
||
.
|
||
---------------------------------------------------------------- NoncentralFDistr(df1=10,df2=20,lambda=0)#159698864 ============= summary ============= NoncF(10,20,0) mean = 1.1111111111111134 var = 0.43209876543209946 skewness = 1.8351920959819077 kurtosis = 9.8938775510203705 entropy = 0.80325807970145024 median = 0.9662638885929155 mode = 0.72727273810629056 medianad = 0.353645635124445 iqrange(0.025) = 2.481149137215127 ci(0.05) = (0.2925222379839803, 2.7736713751991076) range = (0.0, inf) tailexp = (None, -10.999999999975055) int_err = -1.3322676295501878e-15 moments: 0 = 1.0000000000000013 1 = 1.1111111111111134 2 = 1.6666666666666692 3 = 3.3333333333333384 4 = 8.888888888888907 5 = 32.000000000000057 6 = 160.00000000000011 7 = 1173.3333333333323 8 = 14079.999999999984 9 = 366079.99999650108 10 = nan NoncentralFDistr(df1=10,df2=20,lambda=1)#161274512 ============= summary ============= NoncF(10,20,1) mean = 1.2222222222222237 var = 0.52006172839506259 skewness = 1.8290356529428318 kurtosis = 9.8495238262956342 entropy = 0.89702211712671687 median = 1.0636917860814479 mode = 0.80194845221286826 medianad = 0.3884517638346881 iqrange(0.025) = 2.7226106260908765 ci(0.05) = (0.322758535801714, 3.0453691618925904) range = (0.0, inf) tailexp = (None, -10.999999999972818) int_err = -1.5543122344752192e-15 moments: 0 = 1.0000000000000016 1 = 1.2222222222222237 2 = 2.0138888888888924 3 = 4.4186507936508033 4 = 12.910383597883627 5 = 50.863161375661498 6 = 277.99604828042396 7 = 2226.0240024250497 8 = 29137.004235560016 9 = 825494.57365605189 10 = nan NoncentralFDistr(df1=10,df2=20,lambda=2)#163462832 ============= summary ============= NoncF(10,20,2) mean = 1.333333333333335 var = 0.61111111111111194 skewness = 1.8163593497309056 kurtosis = 9.7615112160566468 entropy = 0.98012006444187583 median = 1.1624039266221915 mode = 0.8799399266304766 medianad = 0.42214839581726177 iqrange(0.025) = 2.9528138350825057 ci(0.05) = (0.3549071583894989, 3.3077209934720044) range = (0.0, inf) tailexp = (None, -10.999999999971179) int_err = -1.9984014443252818e-15 moments: 0 = 1.000000000000002 1 = 1.333333333333335 2 = 2.3888888888888928 3 = 5.6825396825396908 4 = 17.952380952380985 5 = 76.287830687830834 6 = 448.73121693121772 7 = 3859.0179894179923 8 = 54145.490652557295 9 = 1641470.1347297181 10 = nan NoncentralFDistr(df1=10,df2=20,lambda=5)#161254928 ============= summary ============= NoncF(10,20,5) mean = 1.6666666666666692 var = 0.90277777777777923 skewness = 1.7733920390383775 kurtosis = 9.4803043110735157 entropy = 1.1840938773902951 median = 1.4631480545186373 mode = 1.1268311177888968 medianad = 0.5173410948529611 iqrange(0.025) = 3.5960479107177648 ci(0.05) = (0.46178063112227075, 4.057828541840036) range = (0.0, inf) tailexp = (None, -10.999999999966779) int_err = -1.3322676295501878e-15 moments: 0 = 1.0000000000000013 1 = 1.6666666666666692 2 = 3.6805555555555607 3 = 10.664682539682554 4 = 40.629960317460394 5 = 206.40310846560888 6 = 1440.3575562169344 7 = 14596.586061507967 8 = 239888.24576995178 9 = 8472203.0272725429 10 = nan NoncentralFDistr(df1=10,df2=20,lambda=10)#164504272 ============= summary ============= NoncF(10,20,10) mean = 2.2222222222222259 var = 1.4506172839506197 skewness = 1.7205627636672378 kurtosis = 9.1581193817499535 entropy = 1.4327902005604325 median = 1.9714893737454442 mode = 1.5586834473942461 medianad = 0.6619112343407831 iqrange(0.025) = 4.571299599008926 ci(0.05) = (0.6676701063045128, 5.238969705313439) range = (0.0, inf) tailexp = (None, -10.999999999960592) int_err = -1.3322676295501878e-15 moments: 0 = 1.0000000000000013 1 = 2.2222222222222259 2 = 6.3888888888888982 3 = 23.650793650793698 4 = 113.3597883597886 5 = 715.28042328042511 6 = 6132.5661375661603 7 = 75638.694885362012 8 = 1500523.6155202929 9 = 63504598.5883056 10 = nan
... show()
|
||
.
|
||