toggle all code blocks

Demo of noncentral distributions.

...
from pacal import *
.
Using compiled interpolation routine
Compiled sparse grid routine not available
...
from pylab import figure, legend, title, xlim, ylim colors = "kbgrcmy" def plot_nonc(d, titl = "", lim = None): figure() print "----------------------------------------------------------------" for i, nc in enumerate([0, 1, 2, 5, 10]): ncd = d(nc) print ncd ncd.summary(show_moments=True) ncd.plot(label = "nonc=" + str(nc), color = colors[i%len(colors)]) print if lim is not None: xlim(lim[0], lim[1]) ylim(lim[2], lim[3]) title(titl) legend() show()
.

Noncentral T

...
plot_nonc(lambda nc: NoncentralTDistr(2, nc), titl = "NoncentralT(2, nonc)")
.
----------------------------------------------------------------
NoncentralTDistr(df=2,mu=0)#66364016
============= summary =============
  NoncT(2,0)
                mean  =  0.0
                 var  =  inf
            skewness  =  nan
            kurtosis  =  nan
             entropy  =  1.9602792291600828
              median  =  0.0
                mode  =  6.1903394578241122e-09
            medianad  =  0.8164965809277253
      iqrange(0.025)  =  8.605305459498918
            ci(0.05)  =  (-4.302652729749469, 4.3026527297494495)
               range  =  (-inf, inf)
             tailexp  =  (-3.0000000000004379, -3.0000000000004565)
             int_err  =  -2.2204460492503131e-16
      moments:
                   0  =  1.0000000000000002
                   1  =  0.0
                   2  =  nan
                   3  =  nan
                   4  =  nan
                   5  =  nan
                   6  =  nan
                   7  =  nan
                   8  =  nan
                   9  =  nan
                  10  =  nan

NoncentralTDistr(df=2,mu=1)#66367376
============= summary =============
  NoncT(2,1)
                mean  =  1.7724538509055168
                 var  =  inf
            skewness  =  nan
            kurtosis  =  nan
             entropy  =  2.032565640811077
              median  =  1.1424180717802386
                mode  =  0.75893851188818306
            medianad  =  0.9078066441827171
      iqrange(0.025)  =  10.103390219998012
            ci(0.05)  =  (-1.4764994860084424, 8.626890733989569)
               range  =  (-inf, inf)
             tailexp  =  (-3.0000000000003451, -3.0000000000005218)
             int_err  =  -4.4408920985006262e-16
      moments:
                   0  =  1.0000000000000004
                   1  =  1.7724538509055168
                   2  =  nan
                   3  =  nan
                   4  =  nan
                   5  =  nan
                   6  =  nan
                   7  =  nan
                   8  =  nan
                   9  =  nan
                  10  =  nan

NoncentralTDistr(df=2,mu=2)#66389264
============= summary =============
  NoncT(2,2)
                mean  =  3.5449077018109922
                 var  =  inf
            skewness  =  nan
            kurtosis  =  nan
             entropy  =  2.2153700695930576
              median  =  2.3303902594719865
                mode  =  1.5468640851845601
            medianad  =  1.1550512381701201
      iqrange(0.025)  =  13.93583867865285
            ci(0.05)  =  (0.04469873059773619, 13.980537409250585)
               range  =  (-inf, inf)
             tailexp  =  (-3.0000000000004099, -3.0000000000008575)
             int_err  =  -1.3322676295501878e-15
      moments:
                   0  =  1.0000000000000013
                   1  =  3.5449077018109922
                   2  =  nan
                   3  =  nan
                   4  =  nan
                   5  =  nan
                   6  =  nan
                   7  =  nan
                   8  =  nan
                   9  =  nan
                  10  =  nan

NoncentralTDistr(df=2,mu=5)#66364336
============= summary =============
  NoncT(2,5)
                mean  =  8.862269254527531
                 var  =  inf
            skewness  =  nan
            kurtosis  =  nan
             entropy  =  2.8425183550980853
              median  =  5.962374771525829
                mode  =  4.0126194901895431
            medianad  =  2.269713040233854
      iqrange(0.025)  =  29.758031070622845
            ci(0.05)  =  (2.257334844081019, 32.015365914703864)
               range  =  (-inf, inf)
             tailexp  =  (-3.0000000000004845, -3.0000000000005218)
             int_err  =  -1.1102230246251565e-15
      moments:
                   0  =  1.0000000000000011
                   1  =  8.862269254527531
                   2  =  nan
                   3  =  nan
                   4  =  nan
                   5  =  nan
                   6  =  nan
                   7  =  nan
                   8  =  nan
                   9  =  nan
                  10  =  nan

NoncentralTDistr(df=2,mu=10)#69383600
============= summary =============
  NoncT(2,10)
                mean  =  17.724538509055037
                 var  =  inf
            skewness  =  nan
            kurtosis  =  nan
             entropy  =  3.4902865634157831
              median  =  11.988419035468151
                mode  =  8.1256617520309717
            medianad  =  4.355352575617786
      iqrange(0.025)  =  58.106197253538205
            ci(0.05)  =  (5.038848593318069, 63.14504584685628)
               range  =  (-inf, inf)
             tailexp  =  (-10.24319552183813, -3.0000000000005591)
             int_err  =  -1.5543122344752192e-15
      moments:
                   0  =  1.0000000000000016
                   1  =  17.724538509055037
                   2  =  nan
                   3  =  nan
                   4  =  nan
                   5  =  nan
                   6  =  nan
                   7  =  nan
                   8  =  nan
                   9  =  nan
                  10  =  nan
noncentral_pyreport_0.png
...
plot_nonc(lambda nc: NoncentralTDistr(10, nc), titl = "NoncentralT(10, nonc)")
.
----------------------------------------------------------------
NoncentralTDistr(df=10,mu=0)#70820816
============= summary =============
  NoncT(10,0)
                mean  =  -2.7755575615628914e-17
                 var  =  1.2500000000000024
            skewness  =  1.58882185807825e-16
            kurtosis  =  3.9999999999999925
             entropy  =  1.5212624929756817
              median  =  0.0
                mode  =  6.0274295788821538e-09
            medianad  =  0.6998120613124307
      iqrange(0.025)  =  4.45627770397253
            ci(0.05)  =  (-2.2281388519862757, 2.228138851986254)
               range  =  (-inf, inf)
             tailexp  =  (-11.000000000000284, -11.000000000000284)
             int_err  =  -8.8817841970012523e-16
      moments:
                   0  =  1.0000000000000009
                   1  =  -2.7755575615628914e-17
                   2  =  1.2500000000000024
                   3  =  2.2204460492503131e-16
                   4  =  6.2500000000000124
                   5  =  -1.4210854715202004e-14
                   6  =  78.125000000000398
                   7  =  -1.6200374375330284e-12
                   8  =  2734.37500000006
                   9  =  -1.837179297581315e-10
                  10  =  nan

NoncentralTDistr(df=10,mu=1)#74379216
============= summary =============
  NoncT(10,1)
                mean  =  1.0837223079391449
                 var  =  1.3255459592750625
            skewness  =  0.39992972990584891
            kurtosis  =  4.2499413181413477
             entropy  =  1.5430433871472671
              median  =  1.025720922828001
                mode  =  0.93291034194131217
            medianad  =  0.7169797223557234
      iqrange(0.025)  =  4.575131194256144
            ci(0.05)  =  (-1.0346256590795306, 3.540505535176614)
               range  =  (-inf, inf)
             tailexp  =  (-11.00000000000027, -11.00000000000027)
             int_err  =  -8.8817841970012523e-16
      moments:
                   0  =  1.0000000000000009
                   1  =  1.0837223079391449
                   2  =  2.5000000000000044
                   3  =  6.192698902509437
                   4  =  20.833333333333787
                   5  =  80.505085732622433
                   6  =  395.83333333333786
                   7  =  2394.5102423036828
                   8  =  19895.833333336261
                   9  =  270414.51874291606
                  10  =  nan

NoncentralTDistr(df=10,mu=2)#74413200
============= summary =============
  NoncT(10,2)
                mean  =  2.1674446158782885
                 var  =  1.552183837100225
            skewness  =  0.72363329408286414
            kurtosis  =  4.8273295684844699
             entropy  =  1.6038742415428799
              median  =  2.053691151118488
                mode  =  1.8702078674151745
            medianad  =  0.7663524511650831
      iqrange(0.025)  =  4.916869970883092
            ci(0.05)  =  (0.04096565549093609, 4.957835626374028)
               range  =  (-inf, inf)
             tailexp  =  (-11.000000000000307, -11.000000000000181)
             int_err  =  -6.6613381477509392e-16
      moments:
                   0  =  1.0000000000000007
                   1  =  2.1674446158782885
                   2  =  6.2500000000000071
                   3  =  21.674446158782899
                   4  =  89.583333333333456
                   5  =  439.68162207816738
                   6  =  2598.9583333333358
                   7  =  19094.154949403965
                   8  =  187317.70833333323
                   9  =  3012335.1694675167
                  10  =  nan

NoncentralTDistr(df=10,mu=5)#103167568
============= summary =============
  NoncT(10,5)
                mean  =  5.4186115396957231
                 var  =  3.1386489818764018
            skewness  =  1.1915013284649849
            kurtosis  =  6.3154072187525401
             entropy  =  1.9063262108514267
              median  =  5.152684264812535
                mode  =  4.7155492907120564
            medianad  =  1.051562464702453
      iqrange(0.025)  =  6.877359219453013
            ci(0.05)  =  (2.7556674169781727, 9.633026636431186)
               range  =  (-inf, inf)
             tailexp  =  (-11.000000000000433, -11.000000000000158)
             int_err  =  -1.1102230246251565e-15
      moments:
                   0  =  1.0000000000000011
                   1  =  5.4186115396957231
                   2  =  32.500000000000028
                   3  =  216.74446158782894
                   4  =  1620.8333333333344
                   5  =  13778.755058083421
                   6  =  136145.83333333372
                   7  =  1624551.3454249694
                   8  =  25259895.833333459
                   9  =  630530281.08540511
                  10  =  nan

NoncentralTDistr(df=10,mu=10)#103839664
============= summary =============
  NoncT(10,10)
                mean  =  10.837223079391444
                 var  =  8.8045959275056056
            skewness  =  1.3621117864055567
            kurtosis  =  7.0845253856916131
             entropy  =  2.3966117728947571
              median  =  10.331273563114916
                mode  =  9.4949812759964338
            medianad  =  1.7250988211625042
      iqrange(0.025)  =  11.436240190750638
            ci(0.05)  =  (6.5942102221556915, 18.03045041290633)
               range  =  (-inf, inf)
             tailexp  =  (-11.000000000000307, -11.000000000000732)
             int_err  =  -8.8817841970012523e-16
      moments:
                   0  =  1.0000000000000009
                   1  =  10.837223079391444
                   2  =  126.25000000000011
                   3  =  1594.6199673961703
                   4  =  22089.583333333372
                   5  =  341062.89205570531
                   6  =  6013098.9583333377
                   7  =  125980654.06495768
                   8  =  3389117317.7083015
                   9  =  144400264124.44336
                  10  =  nan
noncentral_pyreport_1.png
...
.

Noncentral Chi square

...
plot_nonc(lambda nc: NoncentralChiSquareDistr(2, nc), titl = "NoncentralChiSquare(2, nonc)")
.
----------------------------------------------------------------
NoncentralChiSquare(df=2,lambda=0)#103169296
============= summary =============
  NoncChi2(2,0)
                mean  =  2.0000000000000004
                 var  =  4.000000000000008
            skewness  =  2.0000000000000089
            kurtosis  =  9.0000000000001403
             entropy  =  1.6931471805599465
              median  =  1.386294361119856
                mode  =  2.3674838630545864e-16
            medianad  =  0.9624236501191911
      iqrange(0.025)  =  7.327123292259132
            ci(0.05)  =  (0.05063561596861359, 7.3777589082277455)
               range  =  (0.0, inf)
             tailexp  =  (None, -158.27198941847502)
             int_err  =  0.0
      moments:
                   0  =  1.0
                   1  =  2.0000000000000004
                   2  =  8.0000000000000178
                   3  =  48.000000000000171
                   4  =  384.00000000000409
                   5  =  3840.0000000001064
                   6  =  46080.000000002772
                   7  =  645120.00000007404
                   8  =  10321920.000001989
                   9  =  185794560.00005379
                  10  =  3715891200.0014415

NoncentralChiSquare(df=2,lambda=1)#110306640
============= summary =============
  NoncChi2(2,1)
                mean  =  3.0000000000000009
                 var  =  8.0000000000000071
            skewness  =  1.767766952966364
            kurtosis  =  7.4999999999999449
             entropy  =  2.0966226994671597
              median  =  2.177038550303904
                mode  =  3.5366674438146647e-15
            medianad  =  1.4702116688484144
      iqrange(0.025)  =  10.390892489050817
            ci(0.05)  =  (0.08330038643724205, 10.47419287548806)
               range  =  (0.0, inf)
             tailexp  =  (None, -149.68320312849369)
             int_err  =  -4.4408920985006262e-16
      moments:
                   0  =  1.0000000000000004
                   1  =  3.0000000000000009
                   2  =  17.0
                   3  =  139.00000000000006
                   4  =  1472.9999999999968
                   5  =  19090.999999999876
                   6  =  291792.99999999453
                   7  =  5129306.9999997923
                   8  =  101817088.99999154
                   9  =  2250495522.9996691
                  10  =  54780588560.986938

NoncentralChiSquare(df=2,lambda=2)#110391824
============= summary =============
  NoncChi2(2,2)
                mean  =  4.0000000000000018
                 var  =  12.000000000000007
            skewness  =  1.5396007178390005
            kurtosis  =  6.3333333333333242
             entropy  =  2.373050068002108
              median  =  3.0936118736811262
                mode  =  7.4666846728198261e-08
            medianad  =  1.955902214027441
      iqrange(0.025)  =  12.787395744436761
            ci(0.05)  =  (0.13596528499266802, 12.92336102942943)
               range  =  (0.0, inf)
             tailexp  =  (None, -146.0193157967114)
             int_err  =  -2.2204460492503131e-16
      moments:
                   0  =  1.0000000000000002
                   1  =  4.0000000000000018
                   2  =  28.000000000000028
                   3  =  272.00000000000023
                   4  =  3344.0000000000055
                   5  =  49471.999999999985
                   6  =  852927.99999999895
                   7  =  16758015.999999948
                   8  =  369082623.9999975
                   9  =  8996922367.9999008
                  10  =  240294124543.99521

NoncentralChiSquare(df=2,lambda=5)#111076752
============= summary =============
  NoncChi2(2,5)
                mean  =  7.0000000000000036
                 var  =  24.000000000000018
            skewness  =  1.1567034896476116
            kurtosis  =  4.8333333333333277
             entropy  =  2.8540805687501845
              median  =  6.03441301933434
                mode  =  3.8440965130941214
            medianad  =  3.046829477549737
      iqrange(0.025)  =  18.458974498667118
            ci(0.05)  =  (0.5147988393313607, 18.97377333799848)
               range  =  (0.0, inf)
             tailexp  =  (None, -138.75099491367538)
             int_err  =  -6.6613381477509392e-16
      moments:
                   0  =  1.0000000000000007
                   1  =  7.0000000000000036
                   2  =  73.000000000000071
                   3  =  983.00000000000091
                   4  =  16049.00000000002
                   5  =  306215.00000000041
                   6  =  6662905.000000013
                   7  =  162455095.00000036
                   8  =  4379998945.0000086
                   9  =  129231454535.00015
                  10  =  4137832886825.0093

NoncentralChiSquare(df=2,lambda=10)#111200048
============= summary =============
  NoncChi2(2,10)
                mean  =  12.000000000000009
                 var  =  44.000000000000014
            skewness  =  0.87712391149894509
            kurtosis  =  4.0413223140495829
             entropy  =  3.2337776610177489
              median  =  11.01687376621316
                mode  =  8.9405001408011078
            medianad  =  4.2874279598175296
      iqrange(0.025)  =  25.432208283076946
            ci(0.05)  =  (2.0766291514586293, 27.508837434535575)
               range  =  (0.0, inf)
             tailexp  =  (None, -130.56040988872405)
             int_err  =  -4.4408920985006262e-16
      moments:
                   0  =  1.0000000000000004
                   1  =  12.000000000000009
                   2  =  188.00000000000017
                   3  =  3568.0000000000045
                   4  =  78864.000000000087
                   5  =  1979840.0000000023
                   6  =  55468479.999999933
                   7  =  1711768320.0000021
                   8  =  57598910720.000069
                   9  =  2096139381759.9973
                  10  =  81952643251199.859
noncentral_pyreport_2.png
...
plot_nonc(lambda nc: NoncentralChiSquareDistr(10, nc), titl = "NoncentralChiSquare(10, nonc)")
.
----------------------------------------------------------------
NoncentralChiSquare(df=10,lambda=0)#71971312
============= summary =============
  NoncChi2(10,0)
                mean  =  10.000000000000004
                 var  =  20.000000000000018
            skewness  =  0.89442719099991375
            kurtosis  =  4.1999999999999966
             entropy  =  2.8467303371806909
              median  =  9.341817765591962
                mode  =  8.0000001171460955
            medianad  =  2.8502164199062614
      iqrange(0.025)  =  17.236204570570507
            ci(0.05)  =  (3.2469727802368404, 20.48317735080735)
               range  =  (0.0, inf)
             tailexp  =  (None, -154.27198941847513)
             int_err  =  -4.4408920985006262e-16
      moments:
                   0  =  1.0000000000000004
                   1  =  10.000000000000004
                   2  =  120.00000000000007
                   3  =  1680.0000000000014
                   4  =  26880.000000000022
                   5  =  483840.00000000058
                   6  =  9676800.0000000093
                   7  =  212889600.00000036
                   8  =  5109350400.0000067
                   9  =  132843110400.00034
                  10  =  3719607091200.0103

NoncentralChiSquare(df=10,lambda=1)#112548944
============= summary =============
  NoncChi2(10,1)
                mean  =  11.000000000000005
                 var  =  24.000000000000014
            skewness  =  0.88453796267170048
            kurtosis  =  4.1666666666666599
             entropy  =  2.9391754523214102
              median  =  10.285182180704636
                mode  =  8.8247439107194197
            medianad  =  3.127713808000056
      iqrange(0.025)  =  18.8832228163269
            ci(0.05)  =  (3.5834431913885103, 22.46666600771541)
               range  =  (0.0, inf)
             tailexp  =  (None, -147.44346212041083)
             int_err  =  0.0
      moments:
                   0  =  1.0
                   1  =  11.000000000000005
                   2  =  145.00000000000006
                   3  =  2227.0000000000023
                   4  =  39041.000000000029
                   5  =  769051.00000000093
                   6  =  16813201.000000015
                   7  =  403889795.0000006
                   8  =  10573236097.000015
                   9  =  299555470891.00055
                  10  =  9130832638481.0312

NoncentralChiSquare(df=10,lambda=2)#116677648
============= summary =============
  NoncChi2(10,2)
                mean  =  11.999999999999996
                 var  =  28.000000000000021
            skewness  =  0.86391879544966399
            kurtosis  =  4.1020408163265296
             entropy  =  3.0190346127763563
              median  =  11.243013356825138
                mode  =  9.6914192947246285
            medianad  =  3.390141606301141
      iqrange(0.025)  =  20.401965709952567
            ci(0.05)  =  (3.943081665237083, 24.34504737518965)
               range  =  (0.0, inf)
             tailexp  =  (None, -143.85161004257196)
             int_err  =  -4.4408920985006262e-16
      moments:
                   0  =  1.0000000000000004
                   1  =  11.999999999999996
                   2  =  172.00000000000009
                   3  =  2864.0000000000023
                   4  =  54288.000000000022
                   5  =  1153472.0000000009
                   6  =  27139264.000000022
                   7  =  700180224.00000048
                   8  =  19648315648.000023
                   9  =  595656682496.00024
                  10  =  19396109036544.012

NoncentralChiSquare(df=10,lambda=5)#117379056
============= summary =============
  NoncChi2(10,5)
                mean  =  15.0
                 var  =  40.000000000000021
            skewness  =  0.79056941504209466
            kurtosis  =  3.8999999999999995
             entropy  =  3.207528555208282
              median  =  14.165927836310884
                mode  =  12.449641931119741
            medianad  =  4.096576949609718
      iqrange(0.025)  =  24.42243233310547
            ci(0.05)  =  (5.152318702405864, 29.574751035511333)
               range  =  (0.0, inf)
             tailexp  =  (None, -136.64615094277852)
             int_err  =  -4.4408920985006262e-16
      moments:
                   0  =  1.0000000000000004
                   1  =  15.0
                   2  =  265.00000000000006
                   3  =  5375.0000000000009
                   4  =  122865.00000000006
                   5  =  3120815.0000000023
                   6  =  87112825.000000104
                   7  =  2648404575.0000033
                   8  =  87050646625.000137
                   9  =  3074393034575.0039
                  10  =  116054342142825.11

NoncentralChiSquare(df=10,lambda=10)#117522960
============= summary =============
  NoncChi2(10,10)
                mean  =  20.000000000000021
                 var  =  60.000000000000043
            skewness  =  0.68853037265908923
            kurtosis  =  3.6666666666666572
             entropy  =  3.4238121816625759
              median  =  19.107384707413736
                mode  =  17.276879326635655
            medianad  =  5.077420399226437
      iqrange(0.025)  =  29.996990768000746
            ci(0.05)  =  (7.5338697787430435, 37.53086054674379)
               range  =  (0.0, inf)
             tailexp  =  (None, -128.48675401585879)
             int_err  =  -6.6613381477509392e-16
      moments:
                   0  =  1.0000000000000007
                   1  =  20.000000000000021
                   2  =  460.00000000000034
                   3  =  11920.000000000007
                   4  =  342800.00000000023
                   5  =  10815040.000000013
                   6  =  370897600.0000003
                   7  =  13723884800.000017
                   8  =  544510009600.00073
                   9  =  23044548736000.031
                  10  =  1035664044723202.1
noncentral_pyreport_3.png
...
.

Noncentral Beta

...
plot_nonc(lambda nc: NoncentralBetaDistr(1, 1, nc), titl = "NoncentralBeta(1, 1, nonc)")
.
----------------------------------------------------------------
NoncentralBetaDistr(alpha=1,beta=1,lambda=0)#112442960
============= summary =============
  NoncBeta(1,1,0)
                mean  =  0.50000000000000011
                 var  =  0.083333333333333356
            skewness  =  -1.9469997199633577e-15
            kurtosis  =  1.8000000000000005
             entropy  =  -2.2508739996880788e-15
              median  =  0.5
                mode  =  0.026229840838391288
            medianad  =  0.25
      iqrange(0.025)  =  0.9499999999999982
            ci(0.05)  =  (0.02499999999999954, 0.9749999999999978)
               range  =  (0.0, 1.0)
             tailexp  =  (None, None)
             int_err  =  -2.2204460492503131e-15
      moments:
                   0  =  1.0000000000000022
                   1  =  0.50000000000000011
                   2  =  0.33333333333333337
                   3  =  0.25
                   4  =  0.20000000000000004
                   5  =  0.16666666666666666
                   6  =  0.14285714285714285
                   7  =  0.125
                   8  =  0.11111111111111112
                   9  =  0.099999999999999992
                  10  =  0.090909090909090912

NoncentralBetaDistr(alpha=1,beta=1,lambda=1)#133318960
============= summary =============
  NoncBeta(1,1,1)
                mean  =  0.5738773611494663
                 var  =  0.079645885164394456
            skewness  =  -0.30915299924560946
            kurtosis  =  1.9382346129962285
             entropy  =  -0.032981926300903498
              median  =  0.6082020162263387
                mode  =  0.99999997067098545
            medianad  =  0.23187077199719475
      iqrange(0.025)  =  0.9428225179076408
            ci(0.05)  =  (0.040393903618925676, 0.9832164215265665)
               range  =  (0.0, 1.0)
             tailexp  =  (None, None)
             int_err  =  2.3314683517128287e-15
      moments:
                   0  =  0.99999999999999767
                   1  =  0.5738773611494663
                   2  =  0.40898111080426958
                   3  =  0.31917000276157415
                   4  =  0.26218663720987745
                   5  =  0.22266703487653369
                   6  =  0.19359469777791613
                   7  =  0.17128660296070614
                   8  =  0.15361640300423257
                   9  =  0.13926783916429222
                  10  =  0.12738135190461969

NoncentralBetaDistr(alpha=1,beta=1,lambda=2)#134034544
============= summary =============
  NoncBeta(1,1,2)
                mean  =  0.63212055882855778
                 var  =  0.071941363792041246
            skewness  =  -0.56163072472903064
            kurtosis  =  2.258770980059611
             entropy  =  -0.107153583906737
              median  =  0.6850769421544973
                mode  =  0.99999997720537714
            medianad  =  0.20033790278970495
      iqrange(0.025)  =  0.9236218543023521
            ci(0.05)  =  (0.06375938805553971, 0.9873812423578918)
               range  =  (0.0, 1.0)
             tailexp  =  (None, None)
             int_err  =  -2.2204460492503131e-16
      moments:
                   0  =  1.0000000000000002
                   1  =  0.63212055882855778
                   2  =  0.47151776468576934
                   3  =  0.37817005891403821
                   4  =  0.31642635245846296
                   5  =  0.27233529713460702
                   6  =  0.23918586063082928
                   7  =  0.21331547151489411
                   8  =  0.19254426043525386
                   9  =  0.17548936309305485
                  10  =  0.16122929896605837

NoncentralBetaDistr(alpha=1,beta=1,lambda=5)#135477008
============= summary =============
  NoncBeta(1,1,5)
                mean  =  0.74686640022017636
                 var  =  0.04720433986987408
            skewness  =  -1.1115465368283606
            kurtosis  =  3.6674999319064203
             entropy  =  -0.39807563031623217
              median  =  0.8080123179913834
                mode  =  0.9999999753426333
            medianad  =  0.1299478410662351
      iqrange(0.025)  =  0.8031790798721575
            ci(0.05)  =  (0.18959475647046786, 0.9927738363426254)
               range  =  (0.0, 1.0)
             tailexp  =  (None, None)
             int_err  =  -8.8817841970012523e-16
      moments:
                   0  =  1.0000000000000009
                   1  =  0.74686640022017636
                   2  =  0.60501375964771809
                   3  =  0.51097523263410749
                   4  =  0.44325283704723756
                   5  =  0.3918679073819063
                   6  =  0.35142042674010981
                   7  =  0.31869327264897468
                   8  =  0.29163603145517836
                   9  =  0.26887407260652779
                  10  =  0.24944856619321057

NoncentralBetaDistr(alpha=1,beta=1,lambda=10)#135687984
============= summary =============
  NoncBeta(1,1,10)
                mean  =  0.83973048212003665
                 var  =  0.023068331702421587
            skewness  =  -1.6100974829039867
            kurtosis  =  6.0198255036441068
             entropy  =  -0.83344942576190806
              median  =  0.885655915984701
                mode  =  0.99999997355462433
            medianad  =  0.07876427304530455
      iqrange(0.025)  =  0.5650867645824653
            ci(0.05)  =  (0.4306950876671735, 0.9957818522496389)
               range  =  (0.0, 1.0)
             tailexp  =  (None, None)
             int_err  =  1.1102230246251565e-16
      moments:
                   0  =  0.99999999999999989
                   1  =  0.83973048212003665
                   2  =  0.72821561430397064
                   3  =  0.64460594712642671
                   4  =  0.57908698973181205
                   5  =  0.52614126283523532
                   6  =  0.48235658151726157
                   7  =  0.4454842501884731
                   8  =  0.41397165679822101
                   9  =  0.38670739498360301
                  10  =  0.36287245559199377
noncentral_pyreport_4.png
...
plot_nonc(lambda nc: NoncentralBetaDistr(10, 15, nc), titl = "NoncentralBeta(10, 15, nonc)")
.
----------------------------------------------------------------
NoncentralBetaDistr(alpha=10,beta=15,lambda=0)#134036816
============= summary =============
  NoncBeta(10,15,0)
                mean  =  0.39999999999999836
                 var  =  0.00923076923076919
            skewness  =  0.15419748144198747
            kurtosis  =  2.820105820105844
             entropy  =  -0.92722950454835984
              median  =  0.3972924046348387
                mode  =  0.39130434780072687
            medianad  =  0.06631350575912001
      iqrange(0.025)  =  0.37296671064538495
            ci(0.05)  =  (0.22109690534667853, 0.5940636159920635)
               range  =  (0.0, 1.0)
             tailexp  =  (None, None)
             int_err  =  4.3298697960381105e-15
      moments:
                   0  =  0.99999999999999567
                   1  =  0.39999999999999836
                   2  =  0.16923076923076849
                   3  =  0.075213675213674891
                   4  =  0.034920634920634776
                   5  =  0.016858237547892646
                   6  =  0.0084291187739463213
                   7  =  0.0043505129155851996
                   8  =  0.0023112099864046371
                   9  =  0.0012606599925843475
                  10  =  0.00070448646644419429

NoncentralBetaDistr(alpha=10,beta=15,lambda=1)#72005648
============= summary =============
  NoncBeta(10,15,1)
                mean  =  0.41132853724592888
                 var  =  0.0093795162593731645
            skewness  =  0.12864812766286643
            kurtosis  =  2.8070566164177673
             entropy  =  -0.91855904303181013
              median  =  0.4090578635207688
                mode  =  0.40405298675856804
            medianad  =  0.06690932478187445
      iqrange(0.025)  =  0.3759629514866686
            ci(0.05)  =  (0.2297162391702446, 0.6056791906569132)
               range  =  (0.0, 1.0)
             tailexp  =  (None, None)
             int_err  =  5.1070259132757201e-15
      moments:
                   0  =  0.99999999999999489
                   1  =  0.41132853724592888
                   2  =  0.17857068181225003
                   3  =  0.081284204970535373
                   4  =  0.038586465012870844
                   5  =  0.019017334009519087
                   6  =  0.0096941826394799421
                   7  =  0.0050947784580311854
                   8  =  0.0027529252539922515
                   9  =  0.0015257434387586741
                  10  =  0.00086552950784239799

NoncentralBetaDistr(alpha=10,beta=15,lambda=2)#142203120
============= summary =============
  NoncBeta(10,15,2)
                mean  =  0.42225172865424165
                 var  =  0.0094878147916762461
            skewness  =  0.1039350234394301
            kurtosis  =  2.7974452686351667
             entropy  =  -0.9122674656662545
              median  =  0.4204167343547491
                mode  =  0.41639828611991553
            medianad  =  0.0673382053680876
      iqrange(0.025)  =  0.378147840257382
            ci(0.05)  =  (0.23834053259134957, 0.6164883728487316)
               range  =  (0.0, 1.0)
             tailexp  =  (None, None)
             int_err  =  4.5519144009631418e-15
      moments:
                   0  =  0.99999999999999545
                   1  =  0.42225172865424165
                   2  =  0.18778433714317228
                   3  =  0.087400806429204281
                   4  =  0.042353572650929802
                   5  =  0.02127720431828891
                   6  =  0.01104122269775816
                   7  =  0.0059001256086713728
                   8  =  0.0032381677871350292
                   9  =  0.0018211176826589141
                  10  =  0.0010473955532219672

NoncentralBetaDistr(alpha=10,beta=15,lambda=5)#144016080
============= summary =============
  NoncBeta(10,15,5)
                mean  =  0.45278943439597108
                 var  =  0.0096201432000261478
            skewness  =  0.035894349843292657
            kurtosis  =  2.7855490537516658
             entropy  =  -0.90437091305234962
              median  =  0.4521888959049869
                mode  =  0.45096865852796064
            medianad  =  0.06783891429956715
      iqrange(0.025)  =  0.38090865641889937
            ci(0.05)  =  (0.2640769200434825, 0.6449855764623819)
               range  =  (0.0, 1.0)
             tailexp  =  (None, None)
             int_err  =  4.4408920985006262e-15
      moments:
                   0  =  0.99999999999999556
                   1  =  0.45278943439597108
                   2  =  0.21463841510065051
                   3  =  0.10593167365957094
                   4  =  0.054185458799116799
                   5  =  0.028618296939051144
                   6  =  0.015557300575710158
                   7  =  0.008681302069808652
                   8  =  0.0049612527290364876
                   9  =  0.0028979013394721189
                  10  =  0.0017270384300759722

NoncentralBetaDistr(alpha=10,beta=15,lambda=10)#144813328
============= summary =============
  NoncBeta(10,15,10)
                mean  =  0.49726921410214625
                 var  =  0.0094172031042719512
            skewness  =  -0.057326363642821752
            kurtosis  =  2.8021279892218276
             entropy  =  -0.91504528557671549
              median  =  0.4983456657864689
                mode  =  0.50086299019577196
            medianad  =  0.06697638936506115
      iqrange(0.025)  =  0.3771702486843422
            ci(0.05)  =  (0.30575323304508756, 0.6829234817294297)
               range  =  (0.0, 1.0)
             tailexp  =  (None, None)
             int_err  =  2.9976021664879227e-15
      moments:
                   0  =  0.999999999999997
                   1  =  0.49726921410214625
                   2  =  0.25669387439803881
                   3  =  0.13695934289897821
                   4  =  0.075261978029826301
                   5  =  0.04246970667067592
                   6  =  0.024547891178927757
                   7  =  0.014502755788461604
                   8  =  0.0087415029790017529
                   9  =  0.0053668936584482753
                  10  =  0.0033515783484655798
noncentral_pyreport_5.png
...
.

Noncentral F

...
plot_nonc(lambda nc: NoncentralFDistr(1, 1, nc), titl = "NoncentralF(1, 1, nonc)", lim = [-0.1, 3, 0, 0.9])
.
----------------------------------------------------------------
NoncentralFDistr(df1=1,df2=1,lambda=0)#142219664
============= summary =============
  NoncF(1,1,0)
                mean  =  nan
                 var  =  nan
            skewness  =  nan
            kurtosis  =  nan
             entropy  =  2.5310242469692885
              median  =  0.9999999999999971
                mode  =  6.5449953952479743e-17
            medianad  =  0.9717365435132885
      iqrange(0.025)  =  647.7874677654179
            ci(0.05)  =  (0.0015437125086741295, 647.7890114779266)
               range  =  (0.0, inf)
             tailexp  =  (None, -1.5000000000003169)
             int_err  =  1.3322676295501878e-15
      moments:
                   0  =  0.99999999999999867
                   1  =  nan
                   2  =  nan
                   3  =  nan
                   4  =  nan
                   5  =  nan
                   6  =  nan
                   7  =  nan
                   8  =  nan
                   9  =  nan
                  10  =  nan

NoncentralFDistr(df1=1,df2=1,lambda=1)#134051600
============= summary =============
  NoncF(1,1,1)
                mean  =  nan
                 var  =  nan
            skewness  =  nan
            kurtosis  =  nan
             entropy  =  3.3555913521807286
              median  =  2.2954203805980216
                mode  =  6.1802553028065065e-17
            medianad  =  2.2143875871903624
      iqrange(0.025)  =  1385.1322785585317
            ci(0.05)  =  (0.0041919517836761355, 1385.1364705103153)
               range  =  (0.0, inf)
             tailexp  =  (None, -1.5000000000003169)
             int_err  =  3.3306690738754696e-15
      moments:
                   0  =  0.99999999999999667
                   1  =  nan
                   2  =  nan
                   3  =  nan
                   4  =  nan
                   5  =  nan
                   6  =  nan
                   7  =  nan
                   8  =  nan
                   9  =  nan
                  10  =  nan

NoncentralFDistr(df1=1,df2=1,lambda=2)#159446416
============= summary =============
  NoncF(1,1,2)
                mean  =  nan
                 var  =  nan
            skewness  =  nan
            kurtosis  =  nan
             entropy  =  3.9265356549232493
              median  =  4.0069613933821495
                mode  =  4.3634370272011962e-17
            medianad  =  3.796203261948913
      iqrange(0.025)  =  2245.4715097329276
            ci(0.05)  =  (0.011310370509324203, 2245.482820103437)
               range  =  (0.0, inf)
             tailexp  =  (None, -1.5000000000003542)
             int_err  =  6.2172489379008766e-15
      moments:
                   0  =  0.99999999999999378
                   1  =  nan
                   2  =  nan
                   3  =  nan
                   4  =  nan
                   5  =  nan
                   6  =  nan
                   7  =  nan
                   8  =  nan
                   9  =  nan
                  10  =  nan

NoncentralFDistr(df1=1,df2=1,lambda=5)#159698704
============= summary =============
  NoncF(1,1,5)
                mean  =  nan
                 var  =  nan
            skewness  =  nan
            kurtosis  =  nan
             entropy  =  4.8939846800934692
              median  =  10.103710479505944
                mode  =  6.1802553028065065e-17
            medianad  =  9.005575569013857
      iqrange(0.025)  =  5130.382205818015
            ci(0.05)  =  (0.15750742797489098, 5130.539713245989)
               range  =  (0.0, inf)
             tailexp  =  (None, -1.5000000000002889)
             int_err  =  8.992806499463768e-15
      moments:
                   0  =  0.99999999999999101
                   1  =  nan
                   2  =  nan
                   3  =  nan
                   4  =  nan
                   5  =  nan
                   6  =  nan
                   7  =  nan
                   8  =  nan
                   9  =  nan
                  10  =  nan

NoncentralFDistr(df1=1,df2=1,lambda=10)#159445168
============= summary =============
  NoncF(1,1,10)
                mean  =  nan
                 var  =  nan
            skewness  =  nan
            kurtosis  =  nan
             entropy  =  5.6232262399564013
              median  =  20.9886788068141
                mode  =  2.3289887644643477
            medianad  =  17.922712518472153
      iqrange(0.025)  =  10183.32765475939
            ci(0.05)  =  (0.9992904727604669, 10184.326945232151)
               range  =  (0.0, inf)
             tailexp  =  (None, -1.5000000000004288)
             int_err  =  1.0436096431476471e-14
      moments:
                   0  =  0.99999999999998956
                   1  =  nan
                   2  =  nan
                   3  =  nan
                   4  =  nan
                   5  =  nan
                   6  =  nan
                   7  =  nan
                   8  =  nan
                   9  =  nan
                  10  =  nan
noncentral_pyreport_6.png
...
plot_nonc(lambda nc: NoncentralFDistr(10, 20, nc), titl = "NoncentralF(10, 20, nonc)")
.
----------------------------------------------------------------
NoncentralFDistr(df1=10,df2=20,lambda=0)#159698864
============= summary =============
  NoncF(10,20,0)
                mean  =  1.1111111111111134
                 var  =  0.43209876543209946
            skewness  =  1.8351920959819077
            kurtosis  =  9.8938775510203705
             entropy  =  0.80325807970145024
              median  =  0.9662638885929155
                mode  =  0.72727273810629056
            medianad  =  0.353645635124445
      iqrange(0.025)  =  2.481149137215127
            ci(0.05)  =  (0.2925222379839803, 2.7736713751991076)
               range  =  (0.0, inf)
             tailexp  =  (None, -10.999999999975055)
             int_err  =  -1.3322676295501878e-15
      moments:
                   0  =  1.0000000000000013
                   1  =  1.1111111111111134
                   2  =  1.6666666666666692
                   3  =  3.3333333333333384
                   4  =  8.888888888888907
                   5  =  32.000000000000057
                   6  =  160.00000000000011
                   7  =  1173.3333333333323
                   8  =  14079.999999999984
                   9  =  366079.99999650108
                  10  =  nan

NoncentralFDistr(df1=10,df2=20,lambda=1)#161274512
============= summary =============
  NoncF(10,20,1)
                mean  =  1.2222222222222237
                 var  =  0.52006172839506259
            skewness  =  1.8290356529428318
            kurtosis  =  9.8495238262956342
             entropy  =  0.89702211712671687
              median  =  1.0636917860814479
                mode  =  0.80194845221286826
            medianad  =  0.3884517638346881
      iqrange(0.025)  =  2.7226106260908765
            ci(0.05)  =  (0.322758535801714, 3.0453691618925904)
               range  =  (0.0, inf)
             tailexp  =  (None, -10.999999999972818)
             int_err  =  -1.5543122344752192e-15
      moments:
                   0  =  1.0000000000000016
                   1  =  1.2222222222222237
                   2  =  2.0138888888888924
                   3  =  4.4186507936508033
                   4  =  12.910383597883627
                   5  =  50.863161375661498
                   6  =  277.99604828042396
                   7  =  2226.0240024250497
                   8  =  29137.004235560016
                   9  =  825494.57365605189
                  10  =  nan

NoncentralFDistr(df1=10,df2=20,lambda=2)#163462832
============= summary =============
  NoncF(10,20,2)
                mean  =  1.333333333333335
                 var  =  0.61111111111111194
            skewness  =  1.8163593497309056
            kurtosis  =  9.7615112160566468
             entropy  =  0.98012006444187583
              median  =  1.1624039266221915
                mode  =  0.8799399266304766
            medianad  =  0.42214839581726177
      iqrange(0.025)  =  2.9528138350825057
            ci(0.05)  =  (0.3549071583894989, 3.3077209934720044)
               range  =  (0.0, inf)
             tailexp  =  (None, -10.999999999971179)
             int_err  =  -1.9984014443252818e-15
      moments:
                   0  =  1.000000000000002
                   1  =  1.333333333333335
                   2  =  2.3888888888888928
                   3  =  5.6825396825396908
                   4  =  17.952380952380985
                   5  =  76.287830687830834
                   6  =  448.73121693121772
                   7  =  3859.0179894179923
                   8  =  54145.490652557295
                   9  =  1641470.1347297181
                  10  =  nan

NoncentralFDistr(df1=10,df2=20,lambda=5)#161254928
============= summary =============
  NoncF(10,20,5)
                mean  =  1.6666666666666692
                 var  =  0.90277777777777923
            skewness  =  1.7733920390383775
            kurtosis  =  9.4803043110735157
             entropy  =  1.1840938773902951
              median  =  1.4631480545186373
                mode  =  1.1268311177888968
            medianad  =  0.5173410948529611
      iqrange(0.025)  =  3.5960479107177648
            ci(0.05)  =  (0.46178063112227075, 4.057828541840036)
               range  =  (0.0, inf)
             tailexp  =  (None, -10.999999999966779)
             int_err  =  -1.3322676295501878e-15
      moments:
                   0  =  1.0000000000000013
                   1  =  1.6666666666666692
                   2  =  3.6805555555555607
                   3  =  10.664682539682554
                   4  =  40.629960317460394
                   5  =  206.40310846560888
                   6  =  1440.3575562169344
                   7  =  14596.586061507967
                   8  =  239888.24576995178
                   9  =  8472203.0272725429
                  10  =  nan

NoncentralFDistr(df1=10,df2=20,lambda=10)#164504272
============= summary =============
  NoncF(10,20,10)
                mean  =  2.2222222222222259
                 var  =  1.4506172839506197
            skewness  =  1.7205627636672378
            kurtosis  =  9.1581193817499535
             entropy  =  1.4327902005604325
              median  =  1.9714893737454442
                mode  =  1.5586834473942461
            medianad  =  0.6619112343407831
      iqrange(0.025)  =  4.571299599008926
            ci(0.05)  =  (0.6676701063045128, 5.238969705313439)
               range  =  (0.0, inf)
             tailexp  =  (None, -10.999999999960592)
             int_err  =  -1.3322676295501878e-15
      moments:
                   0  =  1.0000000000000013
                   1  =  2.2222222222222259
                   2  =  6.3888888888888982
                   3  =  23.650793650793698
                   4  =  113.3597883597886
                   5  =  715.28042328042511
                   6  =  6132.5661375661603
                   7  =  75638.694885362012
                   8  =  1500523.6155202929
                   9  =  63504598.5883056
                  10  =  nan
noncentral_pyreport_7.png
...
show()
.
noncentral_pyreport_8.png